
Serial Port
Complete

Programming and Circuits for
RS-232 and RS-485
Links and Networks

by Jan Axelson

ISBN 0-9650819-2-3
copyright 1998 by Jan Axelson. All rights reserved.

Published by Lakeview Research
2209 Winnebago St.
Madison, WI 53704
USA
Phone: 608-241-5824
Fax: 608-241-5848
Email: jan@lvr.com
WWW: http://www.lvr.com

You may distribute this material if you agree to distribute it in full and unchanged and
agree to charge no fee for such distribution with the exception of reasonable media
charges.

Options and Choices

Serial Port Complete 1

1

Options and Choices
This book explores one corner of the computer universe: computers that are linked
together to monitor and control the world outside themselves. Each computer can
exchange information with the others, and each can also calculate, decide, and
take action on its own. This type of link requires three things: computers to do the
work, programming that tells the computers what to do, and a link to connect
them. This chapter introduces options for each of these.

The Computers

Some projects need only a simple link between two computers, while others
require three or more computers that connect along a common path. In this book, I
use the term link broadly, to refer to a connection between two or more computers,
while a network is a link of at least three computers. Each computer in a link is a
node, or junction. Usually, each node can both send and receive, though in a sim-
ple link some nodes may communicate one-way only.

In the types of link described in this book, the computers may read sensors,
switches, or other inputs. They may control motors, relays, displays, or other out-
puts. Because the computers can communicate with each other, the result is an
integrated, intelligent system that enables one computer to react to or control
events at another.

Chapter 1

2 Serial Port Complete

The computers may be of any type, and they may be all the same, or a combina-
tion. This book focuses on two categories: personal computers and embedded con-
trollers.

A personal computer (PC) may be a desktop machine or a laptop, notebook, or
subnotebook. The examples in this book use the family of computers that has
evolved from the IBM PC, including the models XT, AT, ’386, ’486, Pentium, and
their many clones and compatibles. But you can use any personal computer that
has an appropriate serial interface.

An embedded controller is a computer that’s dedicated to performing a single task
or a set of related tasks. Embedded controllers tend to be smaller and less complex
than PCs. Many are built into, or embedded in, the devices they control. An
embedded controller may have no keyboard or display and may be invisible to its
users. For example, PC peripherals such as printers and modems contain embed-
ded controllers that enable the peripherals to handle much of the work of printing
or communicating over the phone lines on their own.

Many embedded controllers have nothing at all to do with PCs. Cars, video-cas-
sette recorders, and microwave ovens are a few everyday items that contain
embedded controllers. Embedded controllers are also popular for one-of-a-kind or
small-scale, custom projects that involve simple control or monitoring tasks.

The CPU, or computer chip, in an embedded controller may be the same micro-
processor found in PCs, or it may be a microcontroller, which is a computer chip
designed specifically for use in control tasks.

Microcontroller chips come in many varieties: 8-bit chips have an 8-bit data path
and are popular for use in monitoring and control links, but 4-, 16-, and 32-bit
chips are also available. Different chips have different features and abilities,
including serial ports of various types, varying amounts of memory for storing
programs and data, and low-power modes for battery-powered circuits. A moni-
toring and control link can use any microcontroller that can connect to the desired
interface.

The examples in this book use two microcontrollers: Parallax's Basic Stamp and
Intel/Micromint’s 8052-Basic. Both are inexpensive and have on-chip Basic inter-
preters for easy programming and debugging.

One category of embedded controllers straddles both worlds. The embedded PC
has the architecture of a PC, but in a stripped-down form that may lack a
full-screen display, keyboard, or disk drives. Embedded PCs are popular because
they can use many of the PC’s familiar programming tools.

Options and Choices

Serial Port Complete 3

The Programming

Each computer in a link must do each of the following:

• Detect communications intended for it.

• Send communications at appropriate times.

• Ignore communications intended for other nodes (if any).

• Carry out any other tasks the computer is responsible for on its own.

The computer’s programming is responsible for each of these, with some assis-
tance from the hardware.

Languages and Operating Systems

The program code may vary from one node to another, because the computer type
and programming language may vary, and also because different nodes may have
different functions.

On a PC, the program is software stored on disk. To run the program, the operat-
ing system loads it into the system's memory (RAM). In all but some embedded
PCs, the user interface includes a keyboard and display.

On a microcontroller, the program is in firmware, which is program code stored in
an EPROM or other nonvolatile memory chip. The microcontroller may run the
program directly from where it is stored, without requiring an operating system to
load the program into RAM or manage other operations.

The computers may use any programming language. The only requirement for
communications is that all must agree on a format for data on the link.

Message Properties

Although there are many types of monitoring and control links, the communica-
tions in a link tend to have the following in common:

Messages are short, ranging from a byte or two in a very simple system to hun-
dreds of bytes in others. A computer in this type of link isn’t likely to send Mega-
bytes of data at once.

Messages may require a quick response. In some links, a message may carry
emergency information (The motor is stuck! The door is open!) and the receiving
computer will need to respond quickly, either by taking direct action or by
instructing another computer to handle the problem.

Chapter 1

4 Serial Port Complete

The frequency of messages may vary. In some links, a computer may send or
receive many messages within a second. In others, a computer may go a day or a
week without sending or receiving anything.

The communications protocol and message format are two ways that the program-
ming ensures that each node recognizes and understands the messages directed to
it.

Protocols
A protocol is a set of rules that defines how the computers will manage their com-
munications. The protocol may specify how data is formatted for transmitting and
when and how each node may transmit.

PCs and many microcontrollers have built-in components (UARTs) that handle
many of the details automatically, or with limited program assistance.

When there are just two devices, the rules need to specify whether both ends can
transmit at once, or whether they need to take turns. With three or more devices,
things become more complicated. Because all nodes usually share the same path,
each device has to know when it may transmit, as well as whether a received com-
munication is meant for itself or another node.

Besides the data path, a link may use additional lines to indicate when a transmit-
ter has data to send, when a receiver is able to accept new data, or other control or
status information. The process of exchanging status information about a trans-
mission is called handshaking. The control and status signals are handshaking sig-
nals. Hardware handshaking uses dedicated lines for the signals. Some links use
software handshaking, which accomplishes the same thing by sending special
codes in the data path.

Message Format
A message is a block of data intended for one or more receivers. The message for-
mat defines what type of data the message contains and how the data is arranged
within the message. All nodes have to agree on a format.

When there is more than one receiver, the receivers need a way to detect which
node is the intended receiver. For this reason, network messages usually include
the receiver’s address. In a very simple network, a message may consist of just
two bytes: one to identify the receiver and another containing data.

Messages may include other information as well. To enable receiving nodes to
detect the start and end of a message, the message may include codes to indicate
these, or bytes specifying the length of the message. A message may also include
one or more bytes that the receiving node uses in error-checking.

Options and Choices

Serial Port Complete 5

The Link

The physical link between computers consists of the wires or other medium that
carries information from one computer to another, and the interface that connects
the medium to the computers.

The requirements of a link help to determine which interface to use and what
medium to use to connect the nodes. In the types of systems described in this
book, the distance between computers may range from a few feet to a few thou-
sand feet. The time between communications may be shorter than a second, or
longer than a week. The number of nodes may range from two to over two hun-
dred.

Most links use copper wire to connect computers, often inexpensive twisted-pair
cable. The path may be a single data wire and a ground return, or a pair of wires
that carry differential signals. Other options include fiber-optic cable, which
encodes data as the presence or absence of light, and wireless links, which send
data as electromagnetic (radio) or infrared signals in the air.

For most projects, there is a standard interface that can do the job. Most of the
links described in this book use one of two popular interfaces: RS-232 for shorter,
slower links between two computers, or RS-485 for longer or faster links with two
or more computers.

An interface may use existing ports on the computers, or it may require added
ports or adapters. Most PCs have at least one RS-232 interface, and an RS-232 or
RS-485 interface is easily added to a PC or microcontroller.

Table 1-1 compares RS-232 and RS-485 to other interfaces that a monitoring or
control system might use.

RS-232 is popular because it’s widely available, inexpensive, and can use longer
cables than many other options. RS-485 is also inexpensive, easy to add to a sys-
tem, and supports even longer distances, higher speeds, and more nodes than
RS-232.

The IrDA (Infrared Data Association) interface can use the same UARTs and data
formats as RS-232 (with added encoding), but the data transmits as infrared
energy over a wireless link. IrDA is useful for short, line-of-sight links between
two devices where cabling is inconvenient.

MIDI (Musical Instrument Digital Interface) is used for transferring signals used
by musical instruments, theatrical control equipment, and other machine control-
lers. It uses an optically isolated 5-milliampere current loop at 31.5 kbps.

Microwire, SPI, and I2C are synchronous serial interfaces that are useful for short
links. Many microcontrollers have one or more of these interfaces built-in.

Chapter 1

6 Serial Port Complete

USB (Universal Serial Bus) and Firewire (IEEE-1384) are new, high-speed, intel-
ligent interfaces for connecting PCs and other computers to various peripherals.
USB is intended to replace the standard RS-232 and Centronics printer ports as
the interface of choice for modems and other standard peripherals. Firewire is
faster and designed for quick transferring of video, audio, and other large blocks
of data.

Ethernet is the familiar network interface used in many PC networks. It’s fast and
capable, but the hardware and software required are complex and expensive com-
pared to other interfaces.

The alternative to serial interfaces is parallel interfaces, which have multiple data
lines. Because parallel interfaces transfer multiple bits at once, they can be fast.
Usually there is just one set of data lines, so data travels in one direction at a time.

Table 1-1: Comparison of popular computer interfaces. Where a standard
doesn’t specify a maximum, typical maximums are listed.
Interface Format Number of

Devices
(maximum)

Length
(maximum,
feet)

Speed
(maximum,
bits/sec.)

RS-232
(EIA/TIA-232)

asynchronous
serial

2 50-100 20k
(115k with
some drivers)

RS-485
(TIA/EIA-485)

asynchronous
serial

32 unit loads 4000 10M

IrDA asynchronous
serial infrared

2 6 115k

Microwire synchronous
serial

8 10 2M

SPI synchronous
serial

8 10 2.1M

I2C synchronous
serial

40 18 400k

USB asynchronous
serial

127 16 12M

Firewire serial 64 15 400M

IEEE-488
(GPIB)

parallel 15 60 1M

Ethernet serial 1024 1600 10M

MIDI serial current
loop

2 15 31.5k

Parallel
Printer Port

parallel 2, or 8 with
daisy-chain
support

10-30 1M

Options and Choices

Serial Port Complete 7

Over long distances or with more than two computers in a link, the cabling for
parallel interfaces becomes too expensive to be practical.

The Centronics parallel printer interface predates the PC and just about every PC
has included a Centronics-compatible interface. The IEEE-1284 standard defines
new connectors, cables, and high-speed protocols for the port’s 17 lines. Because
the interface has been standard on all PCs, it’s been pressed into service as an
interface for scanners, external disk drives, data-acquisition devices, and many
other special-purpose peripherals.

IEEE-488, which began life as Hewlett-Packard’s GPIB (General-purpose Inter-
face Bus) is another parallel interface popular in instrumentation and control
applications.

Applications

This book focuses on what you need to design and program serial links. It doesn’t
get into application-specific details such as how to interface and access sensors,
motors, and other devices that connect may to a computer in a monitoring or con-
trol link; these are topics for another time, and another book. But to give an idea of
the possibilities, this section is an overview of the kinds of things you can do with
these links.

One way to categorize links is by direction of data flow. In some systems all com-
puters send and receive more or less equally. In others, most of the data flows to or
from a central computer. For example, most of the activity in a link may relate a
computer’s collecting data from remote locations.

An everyday example of a system that collects data is a weather-watching net-
work. A desktop PC may serve as a master that controls the activities of a variety
of remote computers, which may simple microcontrollers. The master sends com-
mands to the remote computers to tell them how often to collect data, what data to
send to the master, and when to do it. The data collected may include temperature,
air pressure, rainfall, and other variables. At intervals, each site sends its collected
data to a master computer, which stores the data and makes it available for further
viewing and processing.

This basic setup is adaptable to many other types of data-gathering systems. You
can find a sensor to measure just about any property. Table 1-2 lists a variety of
sensor types.

Other systems are mainly concerned with controlling external devices, rather than
gathering data from them. A store-window display may include a set of
mini-robots, each with switches and signals that control motors, lights, and other

Chapter 1

8 Serial Port Complete

mechanical or electrical devices. Again, each device may have its own computer,
with a master computer controlling the show by sending commands to each of the
robot's computers. The robots may also return information about their current
state to the master computer, but the main job of this type of system is to control
the devices, rather than to collect information from them. This arrangement is typ-
ical of many other control systems.

An example of a system involved equally with monitoring and controlling is a
home-control system, which may watch temperature, humidity, motion, switch
states, and other conditions throughout a house. Control circuits hook into the
house’s heating, cooling, lighting, and alarm systems. When the master computer
detects that a room has strayed from the set temperature, it causes more heated or
cooled air to be pumped into the room. When alarm circuits are enabled and
motion is detected, the system generates an alarm. The system may also control
audio and video systems and outdoor lighting and watering.

In each of the examples above, one computer may act as a master that controls a
series of slave computers whose actions are controlled by the master. A slave
transmits only after the master contacts it and gives it permission.

It's also possible to have a system with no master. Instead, each computer has
equal status with the others, and each can request actions from the others. For
example, each computer may take turns transmitting to the others. Or one com-
puter may send a message to another, which in turn can pass the same message, or
a different message, to another computer. In some links, any computer may try to
transmit at any time, and a protocol determines what happens if two try to transmit
at once.

A simple link may use just two computers. One may gather data from or send
commands to another. Or two computers may each be responsible for various
monitoring and control functions, sharing information as equals.

These are just a few examples. By choosing components and writing programs to
control them, you can put together a system to serve whatever purpose you have in

Table 1-2: Types of Sensors
Acceleration

Chemical content

Color

Density

Distance

Electrical properties

Flow

Force

Level

Light

Magnetic properties

Mass

Moisture

Position

Pressure

Radiation

Sound

Strain

Temperature

Thickness

Velocity

Vibration

Weight

Wind

Options and Choices

Serial Port Complete 9

mind. The rest of this book is devoted to presenting what you need to make this
happen.

Serial Port Complete. Introduction. I developed the PC examples with Visual Basic 5. Because they're intended as design tools, and not
as finished applications, I provide the complete source code but not compiled, executable programs. To compile the programs, you must
have a copy of Vis ual Basic. I tested the code on a system running Windows 95.Â Serial Port Complete. Chapter 1. The computers
may be of any type, and they may be all the same, or a cornbination. Preview â€” Serial Port Complete by Jan Axelson. Serial Port
Complete: Com Ports, USB Virtual Com Ports, and Ports for Embedded Systems. by. Jan Axelson. really liked it 4.00 Â· Rating details.
Â· 12 ratings Â· 0 reviews.Â Topics include using .NET's SerialPort class for COM-port communications on PCs; upgrading existing RS-
232 designs to USB or wireless networks; and creating serial networks of embedded systems and PCs.

Comprehensive COM port testing tutorial describes how to test serial port communications with RS232 testing software and perform
loopback test in Hyperterminal. Contain Modbus testing software.Â Complete Serial Port Testing Guide. Olga Weis Nov 28, 2019. There
are many instances where the ability to troubleshoot problems in serial interfaces and devices can be important.

