
THE DESIGN OF A MULTITHREADED PROGRAMMING
COURSE AND ITS ACCOMPANYING SOFTWARE TOOLS

Ching-Kuang Shene and Steve Carr
Department of Computer Science

Michigan Technological University
Houghton, MI 49931-1295

(shene|carr)@mtu.edu

ABSTRACT

With the continuing emergence of multithreaded computation as a powerful
vehicle for science and engineering, the need for an introduction to
multithreaded programming for scientists and engineers is high. All popular
operating systems already support multithreaded programming and the popular
POSIX Pthreads standard has been approved. It is the right time to teach
students this new technology. This paper presents the problems and difficulties
we encountered and a set of comprehensive and flexible course materials for
a multithreaded programming course for sophomore and junior students. This
paper also presents the design of pedagogical tools for the students to visualize
and experiment with various concepts in multithreaded programming. These
concepts include program behavior and execution visualization, deadlock and
race condition detection, and software metrics for measuring the complexity
of students’ programs.

1. INTRODUCTION

John Hopcroft challenged the computer science community with the following [16]:

The major transfer of information from universities to industry does not occur
through journal articles and publications; rather it comes about through students who
get degrees and then take jobs in industry. Given that students beginning their
studies today will not get degrees for another four years and will not be in a position
to affect the ways in which things are done in industry for possibly another 10-15
years, the time delay is on the order of 20 years. We must therefore look ahead as far
as possible and try to educate students now for the rapidly changing world of 20 years
hence.

Although John Hopcroft was talking about technology transfer of robotics research, the same holds
true for any technology, including multithreaded programming. But, the most important point is that
we must teach our students to use future technologies so that technology transfer can happen
smoothly in a shorter period of time. Multithreaded programming has been around for more than
20 years. Some early systems (e.g., IBM OS/MVT) and languages (e.g., IBM PL/I F and Modula

2) supported multithreaded programming under different names. For example, IBM called a thread
a task while Module 2 called it a coroutine. Recently, almost all operating systems, from Windows
95/NT to Unix, support multithreaded programming. Therefore, to make sure our students could
lead the trend of computer science in the foreseeable future, we need to introduce them with this
important skill and this is the main thrust of our project.

While teaching parallel computing can be very difficult in many institutions, multithreaded
(MT) programming (MTP) is a highly accessible parallel programming technique that can improve
the performance of sequential programs. The main benefits include: (1) performance gain from
multiprocessing hardware, (2) increased application responsiveness and throughput, (3) enhanced
process-to-process communications, (4) efficient use of system resources, (5) effective exploitation
of the inherent threadedness of distributed objects, (6) increased reusability due to the fact that a MT
binary can be executed on both uniprocessors and multiprocessors without modification, and (7)
increased portability since a single source can be used on multiple platforms under identical
standards (e.g., POSIX).

Given that most popular operating systems have MT capability built-in, now is the right time
for us to teach students this new technology. In so doing, students will be able to carry the skills over
to their jobs. Unfortunately, MTP is not part of the ACM Computing Curriculum 1991 and is
frequently not taught in many institutions. Compared with C, C++ and Java, there is not much
teaching support available for MTP.

 To fill this gap, we are developing a comprehensive and flexible MT oriented course so that
it can either be taught across many courses (since MT is a generic technology whose impact is not
restricted to a single course) or be taught in a dedicated one. Since teaching MTP is more difficult
than anticipated, we are also developing pedagogical tools that can help students to make a smooth
paradigm shift, to understand synchronization mechanisms more fully, to catch a significantly higher
percentage of bugs related to timing in MTP, and to reduce the complexity of their programs.

The remaining of this paper details our study of the design of a MTP course and its
accompanying software tools. Section 2 surveys some problems in teaching MTP; Section 3
summarizes existing works; Section 4 presents the design merit and contents of our course and
pedagogical tools; and finally Section 5 contains our conclusion.

2. SOME PROBLEMS IN TEACHING MTP

2.1 Where does MTP Fit into the Curriculum?

The most common place for teaching MTP is in an operating systems course in which
approximately three to four weeks are allocated to these topics. This is inadequate since motivating
multiprocess/multithread concepts and teaching synchronization mechanisms usually consume most,
if not all, of these three to four weeks. Students are usually excited about the new topic in the
beginning, but quickly become overwhelmed with the struggles of understanding threads, the syntax
and semantics for creating/joining threads, race conditions, critical sections, semaphores, etc. Since

there is usually only very limited time for students to solve one or two simple MTP problems, they,
in general, do not appreciate the merit of MTP. Furthermore, MTP requires a very difficult mindset
to write correct programs. Some students give up due to frustration, making our effort worthless.

In covering MT concepts as part of an operating systems course, we have tried to teach too
much material in a short period of time. A major problem is a sudden programming paradigm shift
that requires a significant effort to comprehend. A few weeks cannot help students in coping with
and appreciating the beauty and power of MTP. Unfortunately, even though multithreaded
programming is so important, most universities find it virtually impossible to have a dedicated
course due to resource constraints. Therefore, spreading the MTP concepts into several relevant
courses in a careful, well-thoughout, well-planned and organized way may be a viable approach.

2.2 Where are Good Textbooks and Pedagogical Tools?

In the past year, there have been several MTP books published. However, these books do
not make teaching MTP any better or easier than two or three years ago. They are either dedicated
to a particular platform, or they are reference manuals in which the syntax of function calls are
emphasized. Section 3.1 has the details. Worse yet, most examples in these books are too superficial
or are simply rewritten versions of classical problems found in other textbooks. Some of these
textbooks spend significant effort on the syntax of calling MT functions. As a result, most of these
books are inappropriate for classroom use. Not only is the writing style improper, but also many
fundamental concepts such as the trade-off between large critical sections with a few locks and small
critical sections with many locks, are not mentioned or only touched upon superficially.

Software support for teaching MTP is virtually non-existent. During the past several years,
only a few of the MTP books that have been published include software systems [2,6]. In these texts
Ada, extended Pascal or SR is used to convey MTP. While these are good programming languages,
it is unreasonable to use two different languages in one class, one for MT programming and another
for other programming purposes. Java may be a good alternative; however, it suffers from the same
problem as that of Pascal-FC and SR; operating systems are not written in these languages.

2.3 Difficulties in Teaching MT Programming

The authors have taught multiprocess, multithreaded and parallel programming for several
years. Details of teaching MTP in an introduction to operating systems course and our findings can
be found in Shene [30]. This is a 3-credit course with two tracks. The lecture track covers
traditional materials of an operating systems course, while the programming track emphasizes
multithreaded programming. Therefore, students will learn the MTP concepts and skills in a ten-
week quarter by writing five MT programs and completing a user-level MT kernel. The following
are some other issues we found important.

2.3.1 MTP Requires a New Mindset

Since writing MT programs requires a different mindset, especially in debugging, it is rather
difficult for students to apply what they have learned and used for years. Students struggle with the

concept that they are writing multiple programs executed simultaneously. This problem is analogous
to shifting from top-down structured design to object-oriented design and to shifting from procedural
programming to logic or functional programming.

2.3.2 The Behavior of a MT Program is Dynamic

The behavior of a MT program is dynamic, depending on external factors such as CPU speed,
system load, process/thread mix, etc. Therefore, debugging a MT program is considerably more
difficult than debugging a sequential one. Adding time as a variable in program correctness leads to
bugs that may not appear at the same place in every program execution. Moreover, some bugs may
never appear at all. This is one of the most significant aspects of MTP that results in stumbling
blocks in student comprehension of the material. If the material is pushed too fast, students lose
confident quickly.

2.3.3 Proper Synchronization Is More Difficult Than Anticipated

Based on our experience in teaching operating systems, and parallel and MT programming,
we have found that the concept of race conditions and use of critical sections, and mutual exclusion
are far more difficult than anticipated. Without a deeper understanding of these issues, students will
not be able to write decent MT programs and appreciate the power of multithreading. Students
usually encounter the following problems.

First, it is very difficult to convince students that their programs contain race conditions,
because these race conditions may never occur in their tests. Students write MT programs with a
sequential programming mindset. As a result, they test their programs in their usual manner, never
accounting for the effects of time and parallelism on their programs.

Second, deadlocks are difficult to detect by beginning students. Moreover, by only studying
classical problems and examples in the textbooks, which are always correct, they do not learn enough
to synchronize more complex threads correctly. A visual aid is necessary.

Third, student programs tend to have a few very large critical sections handled with a few
locks and/or semaphores. The effect is to serialize their programs. It is difficult to convince students
that their programs are not good since their programs work. Effective use of parallelism is not a
concept that they grasp with the usual amount of time spent on MTP.

Fourth, it is common for new MT programmers to use very complex synchronization logic.
For example, two semaphores would be sufficient to implement the rendezvous of two threads. But,
many students use counters instead of the built-in counting mechanism of counting semaphores. As
a result, complex critical sections are required to update these counters. Reasonable software metrics
are required to measure the complexity of synchronization mechanisms in students' programs.

Fifth, most students indicate that they need additional and real examples in addition to the
classical ones. Unfortunately, most textbooks and reference materials repeat the same set of classical
problems. Thus, building a repository of problems, academic and practical, will benefit both

instructors and students.

3. PREVIOUS WORK

3.1 Textbooks and Course Materials

Most operating systems textbooks have chapters on synchronization mechanisms, which can
be considered as part of MTP. Other books can be classified into three categories: (1) books using
a specially designed concurrent programming language, (2) books discussing a particular system, and
(3) books covering general topics and more than one platform.

The first category includes language books such as Ada [11], extended Pascal [2,6], Java [14,
18, 27] and SR [1]. Hartley also wrote a book on SR [13]; however, this is a problem solving type
book. These books focus on a single language, and can be difficult to use as textbooks in a MTP
course since the languages, except for Java, were designed prior to the advent of MTP. Moreover,
students must learn a language that is quite different from the language they use to implement their
operating system project (e.g., C or C++).

The second category has those books written for a particular platform such as Windows 95
and Windows NT [4], Unix [29] and POSIX [7, 20, 26]. Except for the POSIX Pthreads standard,
most systems are platform dependent. Therefore, these books are not good candidates, when a
particular platform is not available.

The third category contains some interesting books, focusing on one or two popular standards
with in-depth discussion [19, 17]. The former is an introduction focusing on general issues, while
the latter contains an in-depth discussion of the multithread models of Sun Solaris and Pthreads.
Both are good reference books.

3.2 Software Tools

In addition to major systems' multithreading support, commercial systems have started to
appear recently (e.g., Threads.h++ and Thread<ToolKit>). These are professional
development systems and even after an educational discount, they are still too expensive for
classroom use. Moreover, for educational purpose, only a fraction of these systems is used.

There are free MT systems. Most of them are implementations of the POSIX Pthreads
standard. Some of them are available on most UNIX platforms, while the others can only be used
on recent Linux kernels (version 2.0 and up). For those places where Linux is the main platform,
these Pthreads implementations are good choices. The problem, however, is that they are not very
stable and like the commercial systems lack educational aids.

There are publications addressing the need of concurrent programming in undergraduate
education. Berk [3] simplified SunOS lightweight process library calls, Higginbotham and Morelli
[15] used the UNIX IPC, and Bynum and Camp [8] developed a language similar to Pascal-FC. The

impact of these works on a comprehensive MTP course is minimal, since their focus is narrow.
While these systems implement various MT capabilities, none of them is capable of providing
programming aids to students to ease learning and help visualization of the activities of a MT
program. A few works do exist to make concurrent programming easier with program animation.
Zimmermann et. al. [36] discussed their system for Portal which uses a special hardware, making
it unportable. Hartley's approach [12,13] used a software technique. The animated program dumps
its activities to a file and then uses XTANGO to playback after the animated program completes.
Price and Baeker [28] also discussed a framework for concurrent programming animation.

3.3 Other Research Efforts

Parallel program execution visualization, debugging and performance-tuning, and race
condition and deadlock detection have been studied extensively. Some of these results can be readily
used for educational purpose. In the following, we shall focus on program visualization, race
condition (or data race) detection, deadlock detection, and complexity measures.

3.3.1 Program Visualization

Visualizing parallel programs can be real-time or post-mortem. The former generates visuals
on-the-fly, while the latter saves the events and plays back with another system. There have been
many published works on these topics. Zhao and Stasko [35] used POLKA for visualizing Pthreads
programs, while Cai [9] discussed a system for visualizing OCCAM programs. PARADE [31],
which is based on POLKA, is a post-mortem system. The advantage of a post-mortem system is that
everything relevant to the execution of a program has been saved and can be replayed at any time.
However, its major disadvantages are (1) it could be too late for a programmer to catch other bugs,
since it only shows one instance of the program execution, (2) a large volume of output will be
generated which could be incomplete or even corrupted if the program ends abnormally, and (3) the
system must also synchronize its own file writing activities, adding an extra layer of complexity that
may affect the program's original behavior.

3.3.2 Race Condition Detection

Detecting race conditions is a very difficult problem. Exactly detecting races in programs
that use multiple semaphores is NP-complete [25]. If the synchronization mechanism is weaker than
semaphores, an exact and efficient algorithm can be found [24]; otherwise, only heuristic algorithms
are known. Along this line, Lu, Klein and Netzer [21] showed that for a single semaphore, detecting
exact race condition is of order O(n1.5p), where n is the number of semaphore operations and p is the
number of processes in the execution.

3.3.3 Static and Dynamic Deadlock Detection

Deadlocks detection can be static or on-the-fly. The former can help the students to identify
potential deadlocks before running their programs; however, it is inaccurate [10, 22]. On the other
hand, one can monitor resource allocation so that deadlocks can be reported on-the-fly. But, by that
time, it is already too late. Note that detecting deadlock cycles statically is NP-hard [23]. A static

algorithm can be very helpful, since students could receive warnings before running their programs.

3.3.4 The Complexity of a Multithreaded Program

The measure of the complexity of a MT program has not received much attention in either
parallel/concurrent programming or software engineering research. Many of these works target only
Ada programs [32,33,34]. Software metrics have been used in entry-level programming courses.
A similar measure could also be very helpful to the students who are learning MT programming for
identifying the complexity of the synchronization mechanisms.

4. THE DESIGN MERIT OF A COURSE AND LAB TOOLS

4.1 Design Merit

Unlike writing a sequential program, which has only one thread of execution, designing and
writing MT programs is very challenging. With properly designed programming aids, students can
indeed learn the MT concepts and skills early, practice it in later courses, and carry what they have
learned to their jobs. Therefore, the design merits of our course are: (1) it should be an intermediate
course for sophomores and juniors, (2) it should address most fundamentals of MT programming
in a learning-by-doing way rather than an in-depth theoretical treatment, (3) it should serve as a
foundation and prepare the students for other courses such as operating systems, parallel
programming, user interface programming, computer graphics and so on, (4) it should be reasonably
modulized so that other instructors can pick a few components for using in their classes, (5) it
should provide visual aids for the students to “see” the effects and behavior of a MT program, and
(6) it should provide pedagogical aids to the students for pinpointing potential problems, easing their
debugging effort, and reducing the complexity of their programs.

Based on the above rationale, this course addresses the fundamentals of MTP with the help
of a group of pedagogical and visual programming aids, and leaves the more complex theoretical
discussion to respective courses. Emphasizing the programming fundamentals does have its merit.
Most students will take jobs in the industry as programmers using some MT capable operating
systems. Equipping them with MT skills will certainly enhance their career opportunity and
survivability. Knowing and practicing the programming fundamentals through visualizing the
program behavior and learning-by-doing will lessen students' fear of in-depth theoretical
development. Process formalism, correctness proofs of synchronization mechanisms, and other
topics in later courses will be less formidable, since students will already be familiar with MT
technology. Consequently, paradigm shifting will be easier.

4.2 Course Contents

This is a 3-credit introduction to MTP course for sophomores and juniors with prerequisites
C/C++, data structures and computer organizations. The course contents are subdivided into 12
modules to be used in a 10-week quarter. It is believed that the whole sequence should be adequate
for a 15-week semester. The laboratory part involves the use of the software tools designed in this

project. The first six modules have been successfully used in an introduction to operating systems
course three times [30].

 Module 1 - Warm UP: This module introduces the fundamental concepts of threads,
including the meaning of threads, creating, destroying and joining threads, and shared
memory programming. Real examples that employ the MT technology such as Netscape and
Java are mentioned.

 Module 2 - Fundamentals: Typical models of MT programs (i.e., client/server, pipeline,
and peer) are introduced. We emphasize the dynamic behavior of MT programs and indicate
when to and when not to use MTP. This is followed by simple MT programs such as an
ATM server and matrix multiplication.

 Module 3 - Synchronization with Locks: Race conditions, critical sections, locks and
deadlocks are covered, followed by examples (e.g., updating a shared counter and list
insertion/delete/search). Then, we discuss lock granularity and contention, followed by the
concept of thread-safe vs. thread-unsafe.

 Module 4 - Synchronization with Semaphores: We emphasize commonly used semaphore
programming models such as locks, counters, communications and rendezvous. Classical
examples are also discussed, followed by an actual application: threading the Mandelbrot set
computation program.

 Module 5 - Synchronization with Condition Variables: This module focuses on different
types of monitors (i.e., Hoare and Mesa) using locks and condition variables. We shall build
a mini-OS for managing resources such as acquiring/releasing a shared device and disk
scheduler. Classical examples are also covered.

 Module 6 - Synchronization with Message Passing: Message queues and mailboxes are
introduced along with issues such as buffered/un-buffered, queue capacity and blocked and
unblocked send and receive. The concept of rendezvous is reintroduced, followed by
examples such as pipeline sort, parallel sieve and N-queens.

 Module 7 - Back to Basics: This module leads the students into the systems level
addressing thread execution environments, thread state diagram, and thread priority and
scheduling. Models such as 1-to-1, many-to-1 and many-to-many are covered, followed by
discussions of kernel vs. user threads and monolithic vs. threaded operating systems.

 Module 8 - Coping with Signals: Topics covered include the concepts and meaning of
signals, synchronized signals, and sending/waiting/handling signals. Two important skills
will be mentioned: signal processing in a MT environment and asynchronized-signal safe
thread programming. As an actual programming example, a thread dispatcher is explained.

 Module 9 - Selected Topics in Pthreads: Selected topics of the POSIX Pthreads standard
are introduced in this module.

 Module 10 - The Concept of a Process: We step out of the thread and into the process
world. Topics include the state diagram of a process and creation/termination/join of
processes using UNIX system calls fork(), exit() and wait(). The UNIX System V
IPCs (i.e., shared memory, semaphore and message queue) are discussed and compared and
contrasted with those of threads.

 Module 11 - Threads in Parallel Computing: The techniques of using threads in a parallel
computing environment are addressed in this module. In addition to topics covered in
previous modules, they also learn load balancing, event synchronization, the basics of MPI,
shared- and distributed-memory and data parallel programming. Parallel programming
models such as work-crew, boss-workers, pipeline and master/slave are discussed.

 Module 12 - Threads in Distributed Computing: Major topics covered in this module
include UICI and a buffered MT communication system, remote procedure calls, distributed
synchronization mechanisms and distributed solutions of several classical problems (e.g.,
dinning philosophers, distributed sieve and N-queens).

4.3 Software Tools

The software tools accompanying this course consists of the following components:

Visualization
Using OO technology, threads and various synchronization mechanisms are wrapped into classes
with which students can set switches to select features. These features include, but are not limited
to, (1) visualizing thread creation, join, and termination, (2) visualizing the internal working of
synchronization mechanisms such as the content of a semaphore queue, a monitor’s boundary, a
condition variable queue, rendezvous of threads, the effect of blocking and unblocking sends and
receives, lock contention, starvation, etc., and (3) visualizing fundamentals of parallel and distributed
computing such as reductions, broadcasting, sockets and RPCs.

We combine and take advantage of three approaches, namely static, real-time and post-
mortem analysis. Static analysis (e.g., possible deadlocks and complexity of synchronization
mechanisms) of a student's program can pinpoint some potential problems before it is run. Since
static analysis is not powerful enough for precisely detecting all possible anomalies, on-the-fly
analysis is required for detecting other problems such as deadlocks. We also believe showing
synchronization activities on-the-fly would be more interesting and helpful as a student can actually
see the behavior of his program on-the-fly. Since only some anomalies can be detected with static
and on-the-fly approaches, a post-mortem approach is also used in our system.

Deadlock Detection
The on-the-fly detection, which can only report deadlocks that actually occur, can easily be
implemented and be incorporated into the visualization module. While on-the-fly detection has been
very popular in many pedagogical languages, reporting potential deadlocks before a program is run
helps students in designing good MT programs without getting into the change-run-debug cycle.

Data Race Detection
This is the most challenging module. There are an unbounded number of potential data races in a
MT program and this is why students always have difficulties in finding data races. Methods for
detecting data races can be static, on-the-fly, and post-mortem. Since this module is a
programming/debugging aid for undergraduate students whose programs are not very complicated,
only static and post-mortem methods are included.

Software Metric Development
Software metrics for MT programs are virtually non-existent and extra research efforts are required.
This measure should report the complexity of the thread structures and synchronization mechanisms
in a student's MT program to help students writing better programs. This module may be primitive;
but it will be informative and offer an important topic for further research.

Other Visualization Aids
In addition to the above programming aids, we believe some predefined animation sequences would
also be very helpful. Some events may not occur as expected and require careful planning to locate
and display. For example, some programming models such as client/server, pipeline and peer can
easily be discussed with predefined animation sequences illustrating the flow of control and data,
the communication operations among threads, and so on. We plan to compile as many predefined
animation sequences as possible and make them available on the Internet.

5. CONCLUSION

In previous sections, we have presented the details of the design of a MT programming
course and its accompanying software tools. We have used about 50% of the materials for a
programming track in an introduction to operating systems course three times. We also reported
some difficulties we have experienced and proposed software tools to address these problems. The
development of these tools is being supported by National Science Foundation. We intend to release
these tools to interested educators in the future.

With the continuing emergence of MT computation as a powerful vehicle for science and
engineering, the need for an introduction to MTP for scientists and engineers is high. Our course
is necessary not only for CS undergraduates but also for engineers as an introduction to scientific
MTP methodology. It is expected that this course will be popular across campuses and become a
long-term part of the CS curriculum.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation under grant DUE-
9752244. The first author is also partially supported by the National Science Foundation under grant
DUE-9653244.

REFERENCES

1. G. R. Andrews, Concurrent Programming: Principles and Practice, Benjamin/Cummings,
1991.

2. M. Ben Ari, Principles of Concurrent Programming, Prentice Hall, 1982.

3. T. S. Berk, A Simple Student Environment for Lightweight Process Concurrent
Programming under SunOS, ACM Twenty-Seventh SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, February 15-18, 1996, pp. 165-169.

4. J. E. Beveridge and R. Wiener, Multithreading Applications in Win32, Addison-Wesley,
1997.

5. C. Brown, UNIX Distributed Programming, Prentice Hall, 1994.

6. A. Burns and G. Davies, Concurrent Programming, Addison-Wesley, 1993.

7. D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997.

8. B. Bynum and T. Camp, After You, Alfonse: A Mutual Exclusion Toolkit, ACM Twenty-
Seventh SIGCSE Technical Symposium on Computer Science Education, Philadelphia,
February 15-18, 1996, pp. 170-174.

9. W. Cai, W. J. Milne and S. J. Turner, Graphical Views of the Behavior of Parallel Programs,
Journal of Parallel and Distributed Computing, Vol. 18 (1993), pp. 223-230.

10. D. Callahan and J. Subhlok, Static Analysis of Low-level Synchronization,
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, 1988, pp. 100-111.

11. N. Gehani, Ada: Concurrent Programming, Prentice-Hall, 1984.

12. S. J. Hartley, Animating Operating Systems Algorithms with XTANGO, ACM Twenty-Fifth
SIGCSE Technical Symposium on Computer Science Education, Phoenix, March 10-11,
1994, pp. 344-348.

13. S. J. Hartley, Operating Systems Programming, Oxford University Press, 1995.

14. S. J. Hartley, Concurrent Programming: The Java Programming Language, Oxford
University Press, 1998.

15. C. William Higginbotham and R. Morelli, A System for Teaching Concurrent Programming,
ACM Twenty-Second SIGCSE Technical Symposium on Computer Science Education, San
Antonio, March 7-8, 1991, pp. 309-316.

16. J. E. Hopcroft, The Impact of Robotics on Computer Science, Communications of the ACM,
Vol. 29 (1986), No. 6 (June), pp. 486-498.

17. S. Kleiman, D. Shah and B. Smaalders, Programming with Threads, Prentice Hall, 1996.

18. D. Lea, Concurrent Programming in Java, Addison Wesley, 1997.

19. B. Lewis and D. J. Berg, Threads Primer, Prentice Hall, 1996.

20. B. Lewis and D. J. Berg, Multithreaded Programming with Pthreads, Prentice Hall, 1998.

21. H-I Lu, P. N. Klein and R. H. B. Netzer, Detecting Race Condition in Parallel Programs that
Use one Semaphore, Technical Report CS-93-29, Department of Computer Science, Brown
University, June 1993.

22. S. P. Masticola, A Model of Ada Programs for Static Deadlock Detection in Polynomial
Time, Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
May 20-21, Santa Cruz, California, 1991, pp. 97-109.

23. S. P. Masticola and B. G. Ryder, Static Infinite Wait Anomaly Detection in Polynomial
Time, LCSR-TR-114, Laboratory for Computer Science Research, Rutgers University, 1990.

24. R. H. B. Netzer and S. Ghosh, Efficient Race Condition Detection for Shared-Memory
Programs with Post/Wait Synchronization, International Conference on Parallel Processing,
August 1992, pp. II242-II246.

25. R. H. B. Netzer and B. P. Miller, On the Complexity of Event Ordering for Shared-Memory
Parallel Program Executions, International Conference on Parallel Processing, August
1990, pp. II93-II97.

26. B. Nichols, D. Buttlar and J. P. Farrell, Pthreads Programming, O’Reilly, 1996.

27. S. Oaks and H. Wong, Java Threads, O'Reilly, 1997.

28. B. A. Price and R. M. Baecker, The Automatic Animation of Concurrent Programs,
Proceedings of First International Workshop on Computer-Human Interface, Moscow,
August 5-9, 1991, pp. 128-137.

29. K. A. Robins and S. Robins, Practical UNIX Programming: A Guide to Concurrency and
Multithreading, Prentice Hall, 1996.

30. C-K Shene, Multithreaded Programming in an Introduction to Operating Systems Course,
Twenty-ninth ACM Annual SIGCSE Technical Symposium, February 26-March 1, 1998, pp
242-246. Course information, including exams and solutions, programming assignments,
project and some overheads used in class, are available at

http://www.csl.mtu.edu/cs270/www/Home.html.

31. J. T. Stasko, The PARADE Environment for Visualizing Parallel Program Executions: A
Progress Report, Technical Report GIT-GVU-95-03, College of Computing, Georgia
Institute of Technology, 1995.

32. R. N. Taylor, A General-Purpose Algorithm for Analyzing Concurrent Programs,
Communications of the ACM, Vol. 26 (1983), No. 5 (May), pp. 362-376.

33. R. N. Taylor, Complexity of Analyzing the Synchronization Structure of Concurrent
Programs, Acta Informatica, Vol. 19 (1983), pp. 57-84.

34. M. Young and R. N. Taylor, Combining Static Concurrency Analysis with Symbolic
Execution, IEEE Transactions on Software Engineering, Vol. 14 (1988), No. 10, pp. 1499-
1511.

35. Q. A. Zhao and J. T. Stasko, Visualizing the Execution of Threads-based Parallel Programs,
Technical Report GIT-GVU-95-01, College of Computing, Georgia Institute of Technology,
January 1995.

36. M. Zimmermann, F. Perrenoud and A. Schiper, Understanding Concurrent Programming
Through Program Animation, ACM Nineteenth SIGCSE Technical Symposium on Computer
Science Education, Atlanta, Georgia, February 25-26, 1988, pp. 27-31.

Academic assignments of the Foundations of Parallel, Concurrent, and Multithreaded Programming course. multithreading java akka
sychronization locks wait notify lock-free wait-free atomic-variables non-blocking. 11 commits.Â Multithreading in Java. Description.
Simulated an auction and a coffee shop real-life scenarios using multi-threading techniques such as synchronization, locks, wait, notify,
thread executor, and atomic and non-blocking data structures. Used akka framework to implement the actor system model for counting
vowels from multiple text files and predicting the number of vowels in a file during each iteration and updating the prediction parameter
depending on the accuracy. Code. Auction Simulation. Coffee Shop Simulation. National Research University Higher School of
Economics. Courses. Multithreaded programming. RU. EN.Â Multithreaded programming. Type: Compulsory course (Applied
Mathematics and Information Science). Area of studies: Applied Mathematics and Information Science. Delivered at: Department of
Applied Mathematics and Informatics. Where: Faculty of Informatics, Mathematics, and Computer Science (HSE Nizhny Novgorod).
When: 3 year, 4 module. Mode of studies: Blended. Even so, I'm excited to announce that the Intel Guide for Developing Multithreaded
Applications has been updated.Â The revised articles illustrate some new features of Intel software tools. The article "Getting Code
Ready for Parallel Execution with IntelÂ® Parallel Composer" has added explanations of new features and new programming libraries
supported by the IntelÂ® Parallel Composer compiler. "Using IntelÂ® Inspector XE 2011 to Find Data Races in Multithreaded Code"
updates how to use the latest version of the thread debugging tool. One of the new articles also deals with Intel software tools.Â For
viewers of Parallel Programming Talk this might sound familiar. Our guest for show #114was Richard Hubbard who talked about this
exact topic.

